

18731

120 MINUTES

1.	The	value of $\sum_{n=1}^{\infty} \frac{1}{n}$	$\frac{2^{n+2}-3^{n+1}}{n}$	$\frac{1}{2}$ is					
	A)	6	<i>н</i> В)	3	C)	0	D)	∞	
2.	$\lim_{n\to\infty} A$	$\frac{1+\sqrt{2}+\sqrt[3]{3}+1}{n}$ equals ∞	$\frac{1}{2} \dots + \sqrt[n]{n}$ B)	equals 0	C)	equals 1	D)	does not exist	
3.	The	series $\sum_{n=1}^{\infty} n^{1000}$	$\int_{0}^{\infty} x^{n} \cos x$	verges absolu	tely when				
	A)	X < 1	B)	x > 1	C)	x > 1	D)	$ \mathbf{x} < 1$	
4.	Any finite subset of a metric space is A) Open C) Not necessarily open				B) D)	Closed Not necess	Closed Not necessarily closed		
5.	I:	ch of the follo Any infinite s Any infinite s I alone	set contain	ns a countable	e set.				
	C)	Neither I r	or II		D)	Both I and	II		
6.	Whi A) B) C)	ch of the follo (1, 2, 1), ((1, 3, 1), ((1, 1, 2), ((1, 1, 1), ((1,-2, 5) a (1, 0, -1), (1, 2, 5) ar	nd (3, -2, 11) (3, -1, 0) and ad (5, 3, 4)					
7.	A) (and W are fir dim (U) + dim > dim (U) + d	n (W)	sional subspa	B) < 0		m (W)	m (U+W) is	
8.	Let V be the subspace of \Re^4 generated by the vectors $(1,-2,5,-3)$, $(2,3,1,-4)$ and								
	(3,8, A)	,-3,-5). Then t 4 B		sion of V is C)	2		D)	1	

- 9. Let A be any $\mathbf{m} \times \mathbf{n}$ matrix. Then the trace of AA^T is the
 - A) sum of all the elements in A
 - B) sum of squares of all the elements in A
 - C) sum of squares of all the diagonal elements in A
 - D) square of the sum of diagonal elements in A

10.	A) C)	Lower trians A diagonal	gular	matrix	IS	B) D)		triangula agonal n			
11.	I: If	of the following A is idempoted in of two skew I alone	nt and A	\neq I, ther	A ⁻¹ do	oes not e	symmetri	c. I nor II	D)	Both I and	II
12.	Which I: II: A)	Every subset Every Borel I alone	ts of R a	ne Bore	l sets asurabl	le	Neither	I nor II	D)	Both I and	ł II
13.	Given	$f(x) = \frac{1}{2} \chi_{[0,3]}$	$(x), x \in$	R when	$e \chi_A(x)$	ε) is the ι	ısual indi	cator fur	nction	defined by	
		$= 1, x \in A$ $= 0, x \notin A$									
	Then s	state which of	the follo	wing is	the Le	beugue	integral o	f f ?			
	A)	$\frac{1}{2}$	B)	$\frac{3}{2}$		C)	3		D)	0	
14.	A)	y two events A $P(A) - P(B)$ $P(A) P(B^{c})$	A and B,	P(A –	B) is	B) D)	P(A) – P(A) –	P(AB) P(B ^c)			
15.	If two A) B) C) D)	events A and I Mutually exc Always mutu Always mutu Always not n	lusive ally exc ally exc	lusive lusive a	nd equ			depende	nt, the	n they are	
16.		tal number of			he mut	-					
	A)	24	B)	26		C)	28		D) :	32	
17.	Let <i>E</i> A) B) C) D)	F_1 and F_2 be an $P(E_1 \cup E_2) \le P(E_1 \cup E_2) \le P(E_1 \cup E_2) \le P(E_1 \cup E_2) \ge P(E_1 \cup E_2)$	$\leq P(E_1)$ $\leq P(E_2)$ $\leq \min\{P$	$(E_1), P($	$E_2)\}$						
18.		se X is a non- ring is true?	negative	erandor	n varia	ble with	finite ex	pectation	, then	which of the	
	A)	$E(\log X) \le \log$	$\log E(X)$)	B)	$E(\log$	$X) \ge \log$	E(X)			
	C)	$E(\log X) = \log X$	$\log E(X)$)	D)	All of	the above	e			

19. Suppose <i>X</i> follows Binomial $b(10, \frac{1}{2})$ distribution, then:								
.,.	A) B) C)	P(X < 5) = 1 P(X > 5) = 1 $P(X < 5) \le 1$ $P(X > 5) \ge 1$	/ 2 / 2	2) 4130		,		
20.		and Y are independent $Y(Y/(X+Y))$ is -1			es such t		-Y)) = 2D)	0.5
21.	A) B)	then $\int_0^\infty P(X) P(X) P(X)$ $E[X]$ $E[X]$ Median of X	(X > x)) <i>dx</i> is:				
22.		$(X_1, X_2, X_3, X_4, X_5)$ $(X_i, X_j) = 3$, i,		.6 and i <j td="" then<=""><td></td><td>$-X_2 + X_3 - X_3 - X_4 - X_4 - X_5 - X_5$</td><td></td><td></td></j>		$-X_2 + X_3 - X_3 - X_4 - X_4 - X_5 - X_5$		
23	Which A) B)	of the following $F(x) = e^{-e^{-x}}$ $F(x) = \begin{cases} 0, & x < 1, & x < 2, \\ 1, & x < 2, \\ 1 - (1 - 1) & 4, \\ 1 -$	ng is not $ \begin{array}{l} \text{rs. } & \text{rs. } \\ \text{rs. } $	t a distribution $ c < 0 $ $ c \ge 0 $,		D)	
24.	Let $F(x)$ and $G(y)$ be the distribution functions of the continuous random variables X and Y. Then the value of $E[2F(X) + (1/2)G(Y)]$ is							n variables X
	A)	4/5	B)	5/4	C)	2/3	D)	3
25.	If <i>X</i> : A)	follows $N(0,1)$.What is	, ,	C)	$\sqrt{(\pi/2)}$	D)	$\sqrt{2}/\sqrt{\pi}$
26.		$F(x_1, y_1) - F(x_2, y_1) - F(x_2, y_2) - $	(x_2, y_2) (x_2, y_2) (x_2, y_2)	Table? $+ F(x_1, y_2) + I$ $- F(x_1, y_2) + I$ $- F(x_2, y_1) - I$	$F(x_2, y_1)$ $F(x_2, y_1)$ $F(x_1, y_2)$	$0 \ge 0$ $0 \ge 0$ $0 \ge 0$	ollowin _.	g is true for a

27.	The characteristic function of a random variable X is: $\frac{1}{10}e^{-it}(2+e^{it}+4e^{i2t}+3e^{i3t})$							
	Thon	D(2V+5>7)	-	0 -		-		
	A)	$P\{2X + 5 < 7\}$ 3/10	B)	7/10	C)	1	D)	4/10
28.	Let P	(.) be the pgf o	f a rand	om variable X	. Then p	ogf of mX is:		
	A)	mP(s)						
	B)	$P(s^m)$						
	C)	sP(m)						
	D)	P(ms)						
29.	If X_n	$\xrightarrow{L} X$ and $Y_n \xrightarrow{L}$	$\bullet C$, the	1:				
		$X_n + Y_n \xrightarrow{L} X$						
	B)	$X_n + Y_n \xrightarrow{P} X$	C + C					
C) $g(X_n)$ doesn't converge in law to $g(X)$								
				verge in law to				
30.		\xrightarrow{P} 0, then,						
	A) 0)	B) 1		C)	-1	D)	∞
31.	Let X maxim		mial dis	tribution b(5,1/	/3). The	n the point at w	hich F	P(X = x) is
	A)	2	B)	3	C)	4	D)	All of the above
32.			y. Then nomial ial is binor	which of the fo		ariables follow	ing b(n	,1/2) and
33.	_	and X_2 are independent of $ (X_1+X_2) $ is	ependen	t Poisson rando	om varia	ables then, the	conditi	onal distribution

B)

A)

Poisson

Binomial C) Geometric

Hypergeometric

D)

34.	Which of the following is not true?									
	A)	E(X) = V(X), if X is Poisson								
	B)	All cumulants of a Poisson distribution are equal to the parameter of the distribution								
	C)	C) $\frac{(X-\lambda)}{\sqrt{\lambda}} \to N(0.1)$ as $\lambda \to \infty$, if X is Poisson								
	D)	7 70								
35.	Let X	Y be a random	variabl	e whose pmf is	$sP\{X =$	x } = $(1/3).(2.1)$	$(3)^{x}; x =$	0,1,2,		
	Then $P\{X = 11 X > 10\}$ is:									
	A)	1/3		2/3	C)	$(1/3)^{10}$	D)	$(2/3)^{10}$		
36.	Whic	h of the follow:	ing dist	ributions obey	memor	ylessness proj	perty?			
	A)	Uniform	B)	Geometric	C)	Gamma	D)	Normal		
37.	If X follows exponential distribution with parameter λ . Then what is $E(e^{-\lambda x})$:									
	A)	1/2	B)	1	C)	0	D)	-1		
38.		and Y are independent and Y are independent on $X + Y$ is Unit $X - Y$ is Unit	n U (-a,a form		-			es following		
	C) D)	$X + Y \stackrel{d}{=} X - X + Y \text{ is ind}$		nt of $X - Y$						
39.	Which of the following is not true in the case of normal distribution? A) If X and Y are iid Normal, then X+Y and X-Y are independent									
	 B) X/Y=X/(/Y/) C) If X and Y are independent and X+Y and X-Y are independent, then X and Y are normal. 									
	D)	If X and Y a	re stanc	dard normal va	riates th	ien, $X^2 + Y^2$	$\sim \chi^2_{(2)}$.			
40.	Suppo A)	ose X follows $P(X > 0) = X$	` ' '		Norma	l distribution l	N(1,2). T	`hen,		
	B)	P(X>0)=1								
	C)	P(X > 0) = I	P(Y > ($1/\sqrt{2}))$						

41. If X and Y are independent $\chi^2_{(m)}$ and $\chi^2_{(n)}$, then the distribution of $Z = \frac{X}{Y}$ is

A) χ^2

B) Normal

C) Beta type I

D) P(X > 0) = P(Y > 0)

D) Beta type II

42.	X follows $N(\mu, \sigma^2)$, then $e^{\mathbb{X}}$ has									
	A)	A) Normal with mean e^{μ} and variance $e^{2\sigma^2}$								
	B)	Exponential with mean e^{μ} and variance $e^{2\sigma^2}$								
	C)	Lognormal with mean μ and variance σ^2								
	D)									
43.	The regression lines of Y on X and X on Y are $Y = aX + b$ and $X = cY + d$. The ratio of the S.D of X and Y is:									
	A)	a/c	B)	c/a	C)	$\sqrt{(c/a)}$	D)	$\sqrt{(a/c)}$		
44.	Which A) B)	,								
	C)	If $Cov(X_1, X_2) = 0$, then X_1 and X_2 are independent.								
	D)	All are not to				1				
45.	The random variables X and Y such that $X + Y$ and $X - Y$ are positively correlated. Then,									
	A)	V(X) < V(Y)								
	B)	V(X) > V(Y)								
	C)	V(X+Y) >	V(X-Y)	()						
	D)	V(X+Y) <	V(X-Y))						
46.	Let X and Y be independent $N(0,1)$ random variables. The distribution of									
		(X-Y)/(X+	<i>I</i>)) IS:							
	A)									
	B)	$\chi^2_{(2)}$								
	C)	F(1,1)								
	D)	F(2,2)								
	Y at	M are inde	nendent	Poisson rand	om varia	hles with na	rameter λ	an unhiaced		

47. X_1 and X_2 are independent Poisson random variables with parameter λ , an unbiased estimator of λ^2 is :

A)
$$(X_1^2 + X_2^2)/2$$

B)
$$(X_1 + X_2)/2$$

C)
$$Max\{X_1, X_2\}$$

D)
$$(X_1^2 + X_2^2 - (X_1 + X_2))/2$$

48. Let p be the proportion of defective items produced by a machine. Suppose n items produced by the machine are examined and a random variable X_i is defined as $X_i = 1$, if the i-th item examined is defective = 0, otherwise.

Let $T = \sum_{i=1}^{n} X_i$. Consider the following statements.

- I: $\frac{T}{n}$ is an unbiased estimator of p
- II: $\frac{T(T-1)}{n(n-1)}$ is an unbiased estimator of p^2

Now state which of the following statement(s) is/are true?

- A) I alone
- B) II alone
- C) Neither I nor II
- D) Both I and II
- 49. Suppose a random sample of size n is available from Cauchy distribution with p.d.f

$$f(x) = \frac{1}{\pi (1 + (x - \mu)^2)}, x \in R, \mu \in R$$

Which of the following is a consistent estimator for μ ?

A) Sample median

B) Sample mean

C) Sample range

- D) Sample mid-range
- $X_1, X_2, ..., X_n$ is a random sample from a distribution with pdf

$$f(x) = \theta x^{\theta - 1}; 0 < x < 1; \theta > 0$$
. Then

- A) $\sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .
- B) $\prod_{i=1}^{n} X_{i} \text{ is a sufficient statistic for } \theta.$
- C) $(1/n)\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for θ .
- D) None of these
- 51. Let $X_1, X_2, ..., X_n$ be independent and identically distributed random variables with pdf

$$f(x) = \begin{cases} \frac{2\theta^2}{x^3}, & x > \theta; \theta > 0\\ 0, & otherwise \end{cases}$$

then, the maximum likelihood estimator of θ is:

- A) $\left[\prod_{i=1}^{n} X_{i}\right]^{3/2}$
- $B) \qquad (1/n) \sum_{i=1}^{n} \ln X_{i}$
- C) $\min(X_1, X_2, ..., X_n)$
- $D) \qquad \max(X_1, X_2, ..., X_n)$

52. Let $X_1, X_2, ..., X_n$ be the random samples from a distribution with density:

$$f(x) = \begin{cases} \theta e^{-\theta x}, & x > 0; \theta > 0 \\ 0, & otherwise \end{cases}$$

The moment estimator of θ is

- A) $\sum_{i=1}^{n} \frac{X_{i}}{n}$
- B) Sample median
- C) $\frac{n}{\sum_{i=1}^{n} X_{i}}$
- D) $(\sum_{i=1}^{n} X_i)^{1/n}$
- 53. Match list 1 with list 2 and select the correct answer using the code given below.

LIST 1	LIST 2
I. Barlett's Test	1. Probability of rejecting the null hypothesis when alternate hypothesis is true
II. ANOVA	2. Probability of rejecting the null hypothesis when it is true
III. Level of significance of a test	3. F- test
IV. Power of a test	4. t- test
	5. Chi square test

The correct match is:

- I II III IV
- A) 5 3 2 1
- B) 5 4 2 1
- C) 5 3 1 2
- D) 4 5 1 2
- 54. Test statistic to test the significance of an observed multiple correlation coefficient of a variable with k other variates in a random sample of size n follows:
 - A) An F distribution with (k, n-k) d.f
 - B) An F distribution with (k-1, n-k-1) d.f
 - C) An F distribution with (k, n-k-1) d.f
 - D) An F distribution with (k-1, n-1) d.f
- 55. Neyman Pearson lemma helps to obtain the most powerful test for testing:
 - A) A simple hypothesis against a composite alternative.
 - B) A composite hypothesis against a composite alternative.
 - C) A composite hypothesis against a simple alternative.
 - D) A simple hypothesis against a simple alternative.

56.	If $X_1, X_2,, X_n$ are independent and identically distributed random variables following									
	Norma	l distribution l	$N(\theta,\sigma^2)$; σ^2 is unkno	wn. The	en the likelihoo	d ratio	test for testing		
	$H_{\scriptscriptstyle 0}$: $ heta$	$=\theta_0 vs H_1:\theta$	$\neq \theta_0$ leads	s to:						
	A)	One sided χ^2	test		B)	One sided stu	ıdents t	test		
	C)	Two sided stu	udents t t	est	D)	Two sided χ	² test.			
57.		grees of freed	om for th	e t-statistic ir	n case of	f paired t-test b	ased on	N paires of		
	A) N	B)	N-1	C)	2N-1	D)	2(N-1	1)		
58.	In a co	ontingency tab	ole, the ex	pected freque	encies a	re computed ur	nder			
	A)	Null hypothe		1	B)	Alternative l		sis H ₁		
	C)	Both H ₀ and	H_1		D)	Neither H ₀	nor H ₁			
59.	A test	that can be us	ed in the	non-naramet	ric case	instead of ANG	OVA is			
37.	A)	Sign test	ica in the	non paramet	B)	Wilcoxin	J V 11 15.	•		
	C)	Kruskal-Wall	lis		D)	Mann-Whitn	ev-U			
	- /				,		- 5 -			
60.	In a Ba	In a Bayesian estimation problem of Poisson mean λ , a gamma prior is formulated.								
	There i	There is a sample of size n from a Poisson and the sample mean is \overline{X} , then:								
	A) The posterior distribution of λ is gamma									
	B)	The posterior	distribut	ion of λ is Po	oisson					
	C)	The posterior	distribut	ion of λ is Po	oisson-ga	amma				
	D)	The prior is n	ot a conj	ugate prior						
61.	Let X follows $b(n, p)$ and p follows $U(0,1)$. Under squared error loss function, which									
		of the following is not true?								
		Bayes estima		+1)/(n+2)						
	B)	Posterior dist								
	C)	Posterior mea								
	D)	Bayes estima			1					
62.	Let X.	X. X be	e a randoi	m sample of s	size <i>n</i> fi	om Normal po	nulatio	n $N(\mu,16)$. If a		
٥						98), then the v				
	A)	4 B)	16		32	D)	64	11 13.		
	. ana	****				0.1				
63.						of the sample				
	A)	$S\left(\frac{N-n}{Nn}\right)^{\frac{1}{2}}$	B)	$S\left(\frac{N-1}{Nn}\right)^{\frac{1}{2}}$	C)	$S\left(1-\frac{n}{N}\right)^{\frac{1}{2}}$	D)	$\frac{S}{n}\left(1-\frac{1}{N}\right)^{\frac{1}{2}}$		
64.	With u	sual notation	finite pop	oulation corre	ction is	:				
	A)	(N-1)/N	B)	(N-n)/N	C)	(N-n)/n	D)	1-(1/n)		

65.	If the population is homogeneous, then which of the following is not preferred?									
	A)	Simple Rand	dom Sar	npling	B)	Systematic Sa	ampling	2		
	C)	Stratified Sa	mpling		D)	None of the a	bove			
66.		ratio estimator PPSWR	of popu B)	lation mean is PPSWOR	unbiased C)	if sampling is SRSWR	done ao D)	ecording to SRSWOR		
67.	The Midzuno-Sen scheme of sampling is a probability sampling scheme in which									
	 A) Probability of selecting a unit is proportional to some measure of size of the unit. B) Probability of selecting a unit is proportional to some measure of size of the units included in the sample. 									
	C)	the units inc	luded in	the sample.				sures of sizes o	f	
	D)	All the poss	ible sam	ples are given	an equal	probability of	selectio	n.		
68.	Which type of experimental design doesn't use the principal of local control in measuring variation among the experimental units?									
	A)	CRD	B)	RBD	C)	LSD	D)	BIBD		
69.	Cons	ider a BIBD w	ith para	meters v, b, k,	r, λ. A B	IBD is said to l	oe symi	netric if		
	A)	b=r, v=k	B)	b=v, r=k	C)	b=λ, v=b	D)	$v=\lambda$, $b=k$		
70.		RBD with r blo	eks, t tr	eatments and c	one missi	ng observation,	the err	or degrees of		
	A)	rt - r - t + 1	B)	rt-r	C)	rt-r-1	D)	rt - r - t		
71.	Which of the following is/are linear contrasts?									
	i.	$y_1 - 2y_2 + 2$	-							
	ii. A)	$3y_1 + 4y_2 - $ i only		ii only	C)	Roth i and ii	D)	Neither i no	ır ii	
70	,	-	,	_	,			rettler i lio	1 1	
72.	Let $V = ((v_{ij}))$ follows Wishart distribution $W_p(n, I_p)$, then v_{11} has									
	A)	•								
		B) Chi-square distribution with (n-1) degrees of freedomC) Non-central Chi-square distribution with n degrees of freedom								
	C) D)		-			1-1) degrees of		n		
73.	Let 2	Y follows multi	variate	normal $N_p(0,\Sigma)$	and A,	C are matrices	of orde	er $p \times p$. Then		
	$X'\!AX$	and X'CX a	are indep	pendent if and	only if					
	A)	AC = 0	B)	$A\Sigma C = 0$	C)	$A\Sigma^{-1}C=0$	D)	$A\Sigma^{-1}C = I$		
74.	If X	$\sim N_p(\mu, \Sigma)$, the	en E(X'X	X) is						
		$\Sigma^{-1} + \mu' \mu$			B)	$\Sigma + \mu' \mu$				
	C)	trace (Σ^{-1} +	$\mu'\mu)$		D)	trace $(\Sigma + \mu' \mu')$	ı)			

75.	Consider a Markov Chain $P = \begin{bmatrix} 0 & \frac{1}{2} & \frac{1}{2} \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. Then p_{11}^{99}		,2,3} and transition	probability matrix					
			1						
	A) 0 B)	1 C)	$\frac{1}{2}$ D)	None of these					
76.	Let $\{Z_r, r \ge 1\}$ be a sequence and let $X_n = Z_1 + Z_2 + + Z_n$ A) $E(Z_1) < \infty$	X_n , for $n \ge 1$. Then $\{X_n, X_n\}$							
	$C) E(Z_1) = 0$	D)	$E(Z_1) = 1$						
77.	Let $\{X(t), t \ge 0\}$ be a stochastic process with stationary independent increments and let $X(0) = 0$ and $EX(1)\} = \mu$. Then $E\{X(t)\}$ is								
	A) 0 B)	μ C)	μt D)	$\mu(t-s)$					
78.	If the number of closed sets A) irreducible B)		nore than one, then the regodic D)	he chain is non-ergodic					
79.	Match list 1 with list 2 and	select the correct answer	er using the code giv	en below.					
	LIST 1		LIST 2						
	I Walsh Price Index	1. The error caused	by considering only	the binary					
	II Formula Error	items. $P_{01} \times Q_{01}$							
		$2. \frac{P_{01} \times Q_{01}}{V_{01}} - 1$							
	III Homogeneity Error	3. The difference between Laspeyer's and Paasche's indices							
	IV Joint Error	4. Geometric cross formula							
	The correct match is:	5. Family budget me	5. Family budget method						
	I II III IV								
	A) 2 3 5 1								
	B) 2 4 3 1								
	C) 5 3 1 2								
	D) 4 3 1 2								
80.	80. Consider the following statements. I: Fisher's Ideal formula for index numbers does not satisfy circular test II: Simple aggregate index does not satisfy unit test State which of the following statement(s) is/are true?								
	A) I alone	B)	II alone						
	C) Neither I nor II	D)	Both I and II						